BRAILS: Building Recognition using Artificial Intelligence at Large Scale
(Latest version 2.0.0)

BRAILS is a new AI-enabled tool to assist regional-scale simulations. BRAILS utilizes machine learning (ML) and deep learning (DL) to create enhanced building inventory databases of cities. Examples of its capabilities include: (a) The identification of roof shapes to improve the damage and loss calculations for the hurricane workflow. This implementation used data from open street map and images from Google Maps. (b) The identification of soft-story buildings to improve models in earthquake workflows. This implementation used engineering knowledge and a subset of images from Google Street View to train a neural network to automatically classify the remaining images.


Source code in GitHub


Join the User Forum Conversation:

  • submit questions and get answers
  • provide user feedback
  • post feature requests
  • get bug reports


How to cite:

Charles Wang, Sascha Hornauer, Barbaros Cetiner, Yunhui Guo, Frank McKenna, Qian Yu, … Kincho H. Law. (2021, March 1). NHERI-SimCenter/BRAILS: Release v2.0.0 (Version v2.0.0). Zenodo.