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Introduction
• Peak wind pressures need to be 

determined for building feature 
design (cladding, windows, 
doors)

• BLWT experiments and CFD 
simulations can be expensive 
computationally, economically, 
and timewise
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This project presents a deep learning model to predict peak 

wind pressures experienced on building surfaces from short 

durations of data. The model serves as a viable solution to 

reducing required computation. 
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Methods

A multi-layer perceptron model was 
created to determine peak pressure 
coefficients from statistical features 
extracted from short durations (8 
seconds) of pressure coefficient time 
series data. The model was trained 
on BLWT data considering wind 
angles from 0-90 degrees.

Conclusions

• The MLP model yields low percent 

error in predicting peak pressure 

coefficients while being trained on 

only short durations of data 

• This model can be tested on CFD 

simulation data to expand its 

applications 

Fig. 1. Feature extraction data

Fig. 2. Training process plot  

Fig. 5. 1-DOF finite-element PINN 

preliminary results 
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Fig. 3. Predicted versus experimental positive 

peak pressure coefficient 

Fig. 4. Predicted versus experimental negative 

peak pressure coefficient

Next Steps 

• Hyperparameter tuning 

• Alternative deep learning models

• PINNs with governing fluid 

dynamics equations 

• Finite-Element PINN 

• Machine learning (ML) models 
can learn from wind data to 
determine pressure coefficients 
in a more efficient manner

• Previous studies have not 
determined peak pressures 
from short duration data

Results

• Positive peak prediction:

Average percent error = 2.78%

• Negative peak prediction:

Average percent error = 3.47%
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The final architecture contained 8 total layers and 10 neurons per hidden layer. 
Inputs were mean, standard deviation, kurtosis, skewness, minimum, 
maximum, and range (all extracted from 25% of each pressure coefficient time 
log for the 510 sensors at each wind angle). The two outputs being predicted 
were positive and negative fitted peak pressure coefficient.

https://doi.org/10.1016/S0167-6105(02)00155-1
https://doi.org/10.1016/S0167-6105(02)00155-1
https://doi.org/10.1016/S0167-6105(02)00381-1
https://doi.org/10.1016/S0167-6105(02)00381-1
https://doi.org/10.1016/j.compstruc.2006.08.070
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1016/j.jweia.2019.104026
http://www.wind.arch.t-kougei.ac.jp/info_center/windpressure/highrise/Homepage/select_T215_4.html
http://www.wind.arch.t-kougei.ac.jp/info_center/windpressure/highrise/Homepage/select_T215_4.html

	Slide 1

