

WE-UQ Tutorial

Characterizing ABL flows using large-eddy simulation for wind load evaluation

Abiy Melaku

Postdoctoral Researcher University of California, Berkeley

The SimCenter is supported by grants from the U.S. National Science Foundation (1612843 & 2131111).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

NSF award: CMMI 2131111

About WE-UQ

 Wind Engineering with Uncertainty Quantification (WE-UQ) is an open-source tool for predicting the response of a building subjected to wind loads while propagating uncertainties present in the wind and structural parameters. The simulations are performed in a workflow application that will run on either the user's local machine or on a highperformance computer at DesignSafe.

- Tool webpage: <u>https://simcenter.designsafe-ci.org/research-tools/we-uq/</u>
- Tool documentation: <u>https://nheri-simcenter.github.io/WE-UQ-Documentation/</u>
- Source code in Github: <u>https://github.com/NHERI-SimCenter/WE-UQ</u>
- User forum: <u>https://github.com/orgs/NHERI-SimCenter/discussions/categories/we-uq</u>
- DesignSafe account: <u>https://www.designsafe-ci.org/</u>

Outline

Introduction

✓ CFD-based workflow in WE-UQ

Tutorial description

✓ Setup files

✓ Target experimental measurement

CFD Setup in WE-UQ

✓ Geometry & domain setup

 \checkmark Mesh generation

✓ Boundary conditions

✓ Numerical setup

✓ Monitoring results

✓ Running on HPC

Results and post-processing

✓ Display results in WE-UQ

✓ Flow visualization using Paraview

Modeling of wind effects on buildings in WE-UQ

Computational Wind Load Evaluation: empty domain simulation

Step-by-step procedure to create CFD model in WE-UQ

ParaView

Tutorial-1: Simulation input and case files

-	Name	Date modified	Туре	Size
[simFiles	9/5/2024 11:37 PM	File folder	
[(scInputs	9/6/2024 12:50 AM	JSON Source File	92 KB
	windProfiles	2/26/2024 3:10 PM	Microsoft Excel Com	21 KB
	Chan [OAN] and files containing the	waash data		
	 windProfiles OpenFOAM case files - containing the 	2/26/2024 3:10 PM mesh data	Microsoft Excel Com	21 KB

- Input JSON files that define all the setup needed in WE-UQ
- Vertical profiles of the target wind characteristics used as input for TInf

Tutorial-1: Target experimental measurement

Description	Value	Unit
Tunnel/domain width	2.2	m
Tunnel/domain height	1.8	m
Domain length	5.2	m
Wind fetch distance	2.1	m
Geometric scale	1:400	
Velocity scale	1:4	
Time scale	1:100	
Reference wind speed	10.69	m/s
Reference height	0.3	m
Duration of the simulation	34	S
Aerodynamic roughness length in full scale	0.5	m
Air density	1.225	kg/m^3
Kinematic viscosity of air	1.5e-5	m^2/s
Sampling frequency (rate)	500	Hz

Taken from TPU¹ database

¹Tokyo Polytechnic University: http://www.wind.arch.t-kougei.ac.jp/info_center/windpressure/highrise/Homepage/homepageHDF.htm

Tutorial-1: Computational domain

Tutorial-1: Generate computational grid

Tutorial-1: Define boundary conditions

Tutorial-1: Specify numerical settings

Geometr	ry	Mesh		Boundary Conditions	Numerical Setup Monitoring CFD-Results
2					
tart Geometry Me	sh Boundary Conditions	Numerical Setup	Monitorina Results		
Turbulence Modeling	g		5		
Simulation Type:		LES		-	
Sub-grid Scale Model	dynamicKEgn				
ous grid could ridden	Dvnamically calculated!				Select LES with a dynamic one-equation subgrid-scale model
Model Coefficients:					(dynamicKEqn)
Solver Type:		nimpleFoam		*	
Number of Non-Orthog	ional Correctors:	1			
Number Corrector Loop	os:	2			— Select pimpleFoam solver with the default configuration
Number of Outer Corre	ector Loops:	1		+	
Duration and Timest	tep				
Duration:	34				Sat the duration of the simulation to 24 sec. with a constant
Time Step:	0.001	Cal	culate • Constant •	Adjustable	
Maximum Courant Number: 1.00		A V		time step of 0.001 sec.	
Parallelization					
Run Simulation in Parallel					Check the option to run the simulation in parallel and set
Number of Processors: 56		÷	the number of processors to 56 cores.		
ave Mesh					
	Save	e Case Files			

Tutorial-1: Monitor simulation data

Tutorial-1: Monitor simulation data

Tutorial-1: Check simulation results (wind profiles)

Tutorial-1: Check simulation results(velocity spectra)

Tutorial-1: Check simulation results (flow field)

