

Center for Computational Modeling and Simulation

Data Gathering, Web Automation & GIS

Wael Elhaddad

NHERI SimCenter Programming Bootcamp 2019 (Day 4)

NSF award: CMMI 1612843

Outline (Day 4)

Introduction

- Web Technologies & HTTP
- Web APIs (e.g. REST)
- JSON
- Relevant Web Services (Exposure and Hazard Data)

Web Automation using Selenium

Tax Assessor's Data (e.g. Anchorage, Memphis, NJ...etc.)

Visualization & Analysis in GIS

Introduction to QGIS

Al Applications

- Computer Vision
- Data Enhancement (SURF)
- Regional Data Gathering Exercise

SimCenter 🚟

Introduction

Web Technologies

SimCenter VIII

What happens when you open the browser and type <u>www.google.com</u>?

Internet Service Provider

HTTP

Hypertext Transfer Protocol (HTTP)

What happens when you open the browser and type <u>www.google.com</u>? Then, what happens when you search for something?

Client

Server

Web API

Application Programming Interface (API)

Defines a set of methods for communication

Web API

Defines the methods for communication between a client and a server

REST API

- Set some standard rules for web communication (e.g. HTTP)
- Four methods are defined (GET, POST, PUT, DELETE)
 - GET: to retrieve data
 - POST: to create data
 - PUT: to modify data
 - DELETE: to delete data

JSON

JavaScript Object Notation

File format to describe data in human-readable form

The format provides attribute-value pairs

Data Types

- Number
- String
- Boolean
- Array
- Objects
- Disadvantage: large size (not efficient)

{:

Web Services

ATC API

- Hazard by Location API: <u>https://hazards.atcouncil.org/api</u>
- Example: <u>https://api-hazards.atcouncil.org/wind.json?lat=35.4676&lng=-97.5164</u>

USGS APIs (NSHMP-ws)

- Hazard Service: <u>https://earthquake.usgs.gov/nshmp-haz-ws/</u>
- Design Maps: <u>https://earthquake.usgs.gov/ws/designmaps/</u>

FDNS

- Earthquake Catalog: <u>https://earthquake.usgs.gov/fdsnws/event/1/</u>
- Examples:

Ridgecrest, CA

https://earthquake.usgs.gov/fdsnws/event/1/query?format=geojson&starttime=2019-01-01&endtime=2019-07-24&latitude=35.6225&longitude=-117.6709&maxradiuskm=50&minmagnitude=6

Anchorage, AK

<u>https://earthquake.usgs.gov/fdsnws/event/1/query?format=geojson&starttime=2018-11-30&endtime=2018-12-01&latitude=61.2181&longitude=-149.9003&maxradiuskm=50&minmagnitude=6</u>

Web Services

DataSF Portal

- Tall Building Inventory
 - Map: <u>https://data.sfgov.org/Housing-and-Buildings/Map-of-Tall-Buildings/xnf9-cudk</u>
 - Inventory: <u>https://data.sfgov.org/Housing-and-Buildings/Tall-Building-Inventory/5kya-mfst</u>
 - Request: <u>https://data.sfgov.org/resource/5kya-mfst.json</u>
- Census API
 - https://www.census.gov/data/developers/data-sets.html

Python Libraries

Requests

- Submit HTTP requests and get the response
- Documentation: <u>https://2.python-requests.org/en/master/</u>

Selenium

- Webdriver to control the web browser
- Documentation: <u>https://selenium-python.readthedocs.io/getting-started.html</u>

BeautifulSoup, lxml

- Packages to facilitate processing html
- Documentation: <u>https://www.crummy.com/software/BeautifulSoup/bs4/doc/#quick-start</u>

Census, US

- Python package to facilitate querying Census data
- Documentation: <u>https://github.com/datamade/census</u>

SimCenter

Requests Demo

Using requests we will get a list of tall buildings and print one of them to the screen

Exercise 1

Print to the screen the list of buildings including relevant information about the building like structure type, occupancy, number of stories, , total area.

Exercise 2

Write the data from exercise 1 into a csv text file, including the latitude and longitude

Exercise 3

Can we get PGA from USGS API for each building and include it in the output file

SimCenter VIII

Selenium Demo

Using Selenium, we automate browsing the tax assessor's website

C 🛈 Not	secure www.muni.org/pw/gsweb			☆ 🛃	W
Home Resi	NICIPALITY OF NCHORAGE dents Businesses Government Visitor Finance > Property Appraisal > New Search > res	s Departments Public Safety ults			
To find anoth	Search Results for 000-0 er property, enter a new parcel and cli	ick Submit Search button			
		hit Search Next			
Click on a parc	el below to display detail information	Hour			
Parcel ID	Name	Site Address	Legal Description		
001-021-08-000	ARR		SHIP CREEK POINT TR D3		
001-021-09-000	ARR		SHIP CREEK POINT TR D1		
001-021-10-000	ARR		US SURVEY 1170 T13N R4W SEC 13 REM ARR TERMINAL RESERVE		
001-021-11-000	ARR		DOWNTOWN EDGE TR 1		
001-021-11-001	SHIP CREEK DEVELOPMENT LLC	811 W 2ND AVE	US SURVEY 408 BLK 122 LT 1A ARR #20180		
001-021-11-003	SHIP CREEK PROPERTY LLC	721 DEPOT DR	USS 1170 LT 2 & USS 408 BLK 122 LT 1 ARR #20422		
001-031-03-000	KOZIOL FRANK S & HALEY PAULA M	500 N ST	ORIGINAL BLK 59 LT 1B		
	DUCKINI DAVID D 500/ 8		ORIGINAL		

- Exercise 4: Can we extract more information about these buildings e.g. number of stories, year built, area...etc.
- Exercise 5: Let's do the same for Memphis, Tennesse

SimCenter VIII

GIS Introduction

- GIS stands for Geographical Information System
- Information is represented in a set of layers

GIS platforms can help you:

- Generate maps & visualize geospatial data
- Transform and edit data
- Perform spatial analysis on the data (e.g. spatial joins)

GIS Software

ArcGIS (Commercial)

- Desktop & Online (cloud/web-based)
- Many universities provide access to student, staff and faculty

QGIS (Free & Open-Source)

- Desktop only
- Easy to use
- Extensible using Python

SimCenter VIII

GIS Basics

Coordinate Systems (CRS)

- Map Projection
- There are many systems (e.g. Local CRS)
- Latitude and Longitude (WGS84 EPSG:4326)

SimCenter

GIS Basics

Two Types of Data Layers

Vector Data

Suitable for discrete and distinct feature e.g. Buildings, Roads...etc

Raster Data:

Suitable for continuous features e.g. elevation, temperature, soil properties....etc

Raster polygon features

Polygon features

GIS Basics

Vector Data: Geometry and Attributes

Example Attributes for Line Data

Example Attributes for Polygon Data

