Data Gathering, Web Automation & GIS

Wael Elhaddad
NHERI SimCenter
Programming Bootcamp 2019 (Day 4)
Outline (Day 4)

- **Introduction**
 - Web Technologies & HTTP
 - Web APIs (e.g. REST)
 - JSON
 - Relevant Web Services (Exposure and Hazard Data)

- **Web Automation using Selenium**
 - Tax Assessor’s Data (e.g. Anchorage, Memphis, NJ...etc.)

- **Visualization & Analysis in GIS**
 - Introduction to QGIS

- **AI Applications**
 - Computer Vision
 - Data Enhancement (SURF)

- **Regional Data Gathering Exercise**
Web Technologies

What happens when you open the browser and type www.google.com?
Hypertext Transfer Protocol (HTTP)

What happens when you open the browser and type www.google.com?
Then, what happens when you search for something?

![Diagram of HTTP request and response](image)

Request

Response

(e.g. HTML, XML, JSON...etc.)
Web API

- **Application Programming Interface (API)**
 - Defines a set of methods for communication

- **Web API**
 - Defines the methods for communication between a client and a server

- **REST API**
 - Set some standard rules for web communication (e.g. HTTP)
 - Four methods are defined (GET, POST, PUT, DELETE)
 - GET: to retrieve data
 - POST: to create data
 - PUT: to modify data
 - DELETE: to delete data
JavaScript Object Notation

File format to describe data in human-readable form

The format provides attribute-value pairs

Data Types
- Number
- String
- Boolean
- Array
- Objects

Disadvantage: large size (not efficient)
Web Services

▪ ATC API
 ▪ Hazard by Location API: https://hazards.atcouncil.org/api
 ▪ Example: https://api-hazards.atcouncil.org/wind.json?lat=35.4676&lng=-97.5164

▪ USGS APIs (NSHMP-ws)
 ▪ Hazard Service: https://earthquake.usgs.gov/nshmp-haz-ws/
 ▪ Design Maps: https://earthquake.usgs.gov/ws/designmaps/

▪ FDNS
 ▪ Earthquake Catalog: https://earthquake.usgs.gov/fdsnws/event/1/
 ▪ Examples:
 - Ridgecrest, CA
 - Anchorage, AK
Web Services

- **DataSF Portal**
 - Tall Building Inventory
 - Inventory: https://data.sfgov.org/Housing-and-Buildings/Tall-Building-Inventory/5kya-mfst
 - Request: https://data.sfgov.org/resource/5kya-mfst.json

- **Census API**
 - https://www.census.gov/data/developers/data-sets.html
Python Libraries

- **Requests**
 - Submit HTTP requests and get the response

- **Selenium**
 - Webdriver to control the web browser
 - Documentation: https://selenium-python.readthedocs.io/getting-started.html

- **BeautifulSoup, lxml**
 - Packages to facilitate processing html

- **Census, US**
 - Python package to facilitate querying Census data
 - Documentation: https://github.com/datamade/census
Requests Demo

- Using requests we will get a list of tall buildings and print one of them to the screen

```python
import requests

# Let's request the tall buildings information
response = requests.get("https://data.sfgov.org/resource/5kya-mfst.json")

# Let's check the response
if(response.status_code == 200):
    tallBuildings = response.json()

    print("Building Name", tallBuildings[0]["name"])
    print("\tOccupancy: ", tallBuildings[0]["occupancy"])
    print("\tAddress: ", tallBuildings[0]["address"])
```

- **Exercise 1**
 Print to the screen the list of buildings including relevant information about the building like structure type, occupancy, number of stories, total area.

- **Exercise 2**
 Write the data from exercise 1 into a csv text file, including the latitude and longitude.

- **Exercise 3**
 Can we get PGA from USGS API for each building and include it in the output file?
Using Selenium, we automate browsing the tax assessor’s website

Exercise 4: Can we extract more information about these buildings e.g. number of stories, year built, area...etc.

Exercise 5: Let's do the same for Memphis, Tennesse

http://www.muni.org/pw/gsweb
GIS Introduction

- GIS stands for Geographical Information System
- Information is represented in a set of layers
- GIS platforms can help you:
 - Generate maps & visualize geospatial data
 - Transform and edit data
 - Perform spatial analysis on the data (e.g. spatial joins)
GIS Software

- **ArcGIS (Commercial)**
 - Desktop & Online (cloud/web-based)
 - Many universities provide access to student, staff and faculty

- **QGIS (Free & Open-Source)**
 - Desktop only
 - Easy to use
 - Extensible using Python
GIS Basics

- Coordinate Systems (CRS)
 - Map Projection
 - There are many systems (e.g. Local CRS)
 - Latitude and Longitude (WGS84 EPSG:4326)
GIS Basics

- Two Types of Data Layers
 - **Vector Data**
 Suitable for discrete and distinct features
 e.g. Buildings, Roads...etc
 - **Raster Data**
 Suitable for continuous features
 e.g. elevation, temperature, soil properties...etc
GIS Basics

- **Vector Data**: Geometry and Attributes

 POINTS: Individual \(x, y\) locations.
 - Examples: Center point of plot locations, tower locations, sampling locations.

 LINES: Composed of many (at least 2) vertices, or points, that are connected.
 - Examples: Roads and streams.

 POLYgons: 3 or more vertices that are connected and **closed**.
 - Examples: Building boundaries and lakes.