quoFEM Application Summary (V4.2)

The Quantified Uncertainty with Optimization for the Finite Element Method (quoFEM) application
facilitates Uncertainty Quantification (UQ) analyses on a wide range of computational simulation models.
The application provides a user-friendly interface with OpenSees and other simulation applications and
easy access to pre-implemented advanced probabilistic analysis algorithms. quoFEM currently supports
global sensitivity analysis, reliability analysis, Bayesian parameter calibration, and surrogate modeling,
along with Monte Carlo-type forward propagation and deterministic optimization techniques. quoFEM
aims to accelerate the adoption of UQ techniques in the natural hazards engineering community by
making robust and practical UQ algorithms more accessible to researchers and practitioners.

USE CASES

Global Sensitivity Analysis for High-dimension Outputs
Sensitivity analysis can be performed to identify parameters of the =
model that are the most influential to the response of interest. Two
algorithms with different coverage and benefits (speed or accuracy)
are supported in quoFEM. One of the algorithms is combined with
dimension reduction techniques to handle high-dimensional outputs.
Application examples include a sensitivity analysis of hurricane model
parameters to quantify their contribution to storm surge water
elevation. In this example, sensitivity analysis for a 2 million output
system was performed in approximately 5 minutes using a sample of
only 500 simulations.

Surrogate Modeling of High-fidelity Simulation Models

Two different surrogate methods are supported in quoFEM: Gaussian
Process (GP) and Probabilistic Learning on Manifolds (PLoM). To
facilitate use of high-fidelity models in regional simulations and design
studies, quoFEM helps users develop surrogate models that are
trained on detailed simulation models (e.g., using finite element
methods) and can then be integrated and run in large-scale regional
models at a fraction of the computational cost of the detailed models.
Smart sampling techniques (i.e., adaptive design of experiments) are
implemented to further reduce the number of computationally
intensive simulation runs in training a surrogate model.
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Calibration of Numerical Simulation Models
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estimation uncertainty using quoFEM or other SimCenter tools.
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CURRENT CAPABILITIES

Uncertainty Quantification: Samples the prescribed random input variables and obtains realizations of
the outputs by executing the workflow with each input realization from the generated sample. The
underlying UQ engines let you leverage the following techniques in your research:

Forward propagation: Define a set of random input parameters and perform Monte Carlo simulations
to obtain a corresponding sample of output parameters.

Sensitivity analysis: Measure the influence of the variability in the response output to uncertainties in
the model input parameters.

Reliability analysis: Algorithms to estimate the probability of exceeding a failure surface.

Surrogate models: Generate training data, develop, and utilize surrogate models using Gaussian
Process and Probabilistic Learning on Manifolds techniques.

Deterministic calibration: Optimize the input parameter values of a computational model to achieve
the closest possible alignment between its outputs and the provided dataset.

Bayesian calibration: Update the uncertainty in the input parameter values for a computational model
based on observed data.

Model class selection: Determine the most appropriate computational model from a set of candidates
that best represents observed data.

Multi-fidelity Monte Carlo Simulation: Utilize lower cost computational models with higher fidelity
models to reduce computational time yet preserving same accuracy.

Bayesian Calibration of Hierarchical Models: Calibrate a model to data from multiple experiments and
to jointly capture the variability in the model parameters.

Surrogate-aided Bayesian Calibration: Efficiently train a surrogate model approximation and use it to
sample from the updated probability distribution of the parameters for models with high computational
cost. For example, using this method, the calibration of a reinforced concrete column model achieved
a 7x speedup with 1,100x fewer model evaluations compared to direct methods.

Response Simulation: Defines the modeling and analysis options that will be used to perform the
numerical simulation, e.g., geometry, connectivity, materials, time integration strategy, convergence,
damping options. quoFEM supports the use of various computational tools (e.g., OpenSees, Python, or
other numerical simulation tools) to simulation the response and collect the requested output quantities.

UPCOMING CAPABILITIES

Open to user requests — join the discussion at https://github.com/orgs/NHERI-
SimCenter/discussions/categories/quofem.

MORE INFORMATION

The software application, examples, and Information about previous releases can be found in the
documentation accessible from the quoFEM website at: https://simcenter.designsafe-ci.org/research-
tools/quofem-application/.

This material is based upon work supported by the U.S. National Science Foundation under Grant No.
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