Deep learning classifier for tornado damage assessment.

Carlos Canchila¹, Levi Dugan¹, Wei Song¹ ¹University of Alabama, Tuscaloosa AL

Pretrained convolutional neural networks (CNNs) outperform non-pretrained ones in post-event building damage classification. Furthermore, pretraining on specialized classification tasks can yield, in some cases, similar level of improvement compared to pretraining on general classification tasks.

Introduction

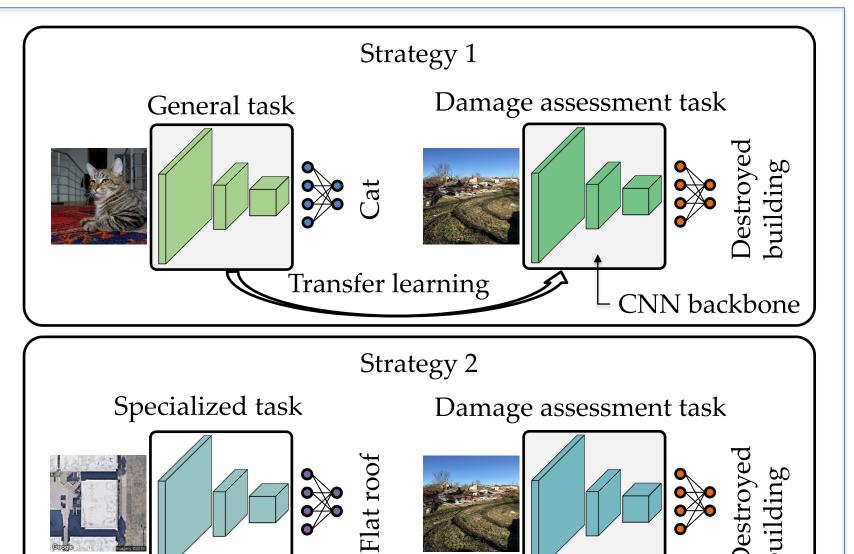
Accurate and fast tornado damage assessment is critical to create adequate post-disaster response and recovery strategies. Deep learning could facilitate these damage assessments. However, large datasets are often required to extract the full potential of deep learning networks.

Methodology

Transfer learning:

- 1. CNNs are pretrained on general or specialized tasks (See Figure 1)
- The pretrained CNN backbone is extracted and transferred to a new CNN

By leveraging the knowledge gained from other tasks, transfer learning can reduce the data demand required to train deep learning networks. In this study, transfer learning is adopted to enhance network performance. Furthermore, the benefits of pretraining on different datasets is explored.



- Tables 3-5 show the performance on the damage assessment testing dataset.
- Pretraining on general tasks leads to an improvement of up to 22%.
- Pretraining on specialized tasks leads to an improvement of up to 20%.

Table 3: Resnet50 performance

Pretraining dataset	Accuracy (%)	
N/A	63.3	
ImageNet	79.5	
Foundation (BRAILS)	67.3	

Table 4: Efficientnetv2-S performance

Pretraining dataset	Accuracy (%)
N/A	61.3
ImageNet	83.7
Roof Type (BRAILS)	77.8
Occupancy (BRAILS)	81.9

Table 5. Efficientnet-h4 performance

The new CNN is retrained

Evaluation metrics:

Accuracy on testing dataset

Experiments

CNNs:

Different CNNs from the BRAILS framework are adopted in this study (see Table 1) [1].

Datasets for pretraining:

Datasets collected by BRAILS for the specialized tasks, and ImageNet [2] and COCO [3] for general tasks.

Damage assessment dataset:

Post-event building damage dataset with 634 images and three classes (see Table 2).

References

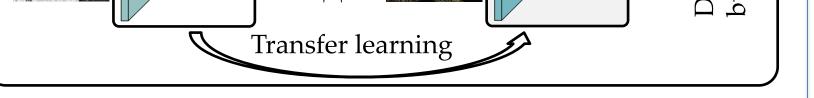


Figure 1: Transfer learning strategies in this study

Table 1: CNN backbones in BRAILS			
Task	CNN backbone		
Foundation Classification	Resnet50		
Roof Type Classification	Efficientnetv2-S		
Occupancy Classification	Efficientnetv2-S		
Chimney Detection	Efficientnet-b4		
Garage Detection	Efficientnet-b4		
Number of Floors Detection	Efficientnet-b4		

Table 2: Building damage dataset

Classes	Images
1. Non or minor damage	197
2. Moderate damage	267
3. Severe damage or destroyed building	170

|--|--|

	Pretraining dataset		Ac	Accuracy (%)	
	N/A		67.	2	
	ImageNet		76.	6	
	COCO		80.	6	
	Chimney ((BRAILS)	80.	7	
	Garage (B)	RAILS)	76.	9	
	Number o	f Floors (BRA	AILS) 81.	2	
Class: 1 Class: 2 Predicted: 1 Predicted: 2		Class: 3 Predicted: 3	Class: 1 Predicted: 3		

Figure 2: Predictions using best Efficientnetv2-S

Conclusions

- Pretraining improves the accuracy of CNNs for post-event building damage classification.
- Pretraining on specialized classification

