

Computational Workflow Framework for Regional Disaster Simulations

Greg Deierlein SimCenter Co-Director Stanford University

Performance-Based Methodology

MAF of:
- collapse
- loss > \$
- downtime > t $v(DV) = \iiint G \langle DV | DM \rangle | dG \langle DM | EDP \rangle | dG \langle EDP | IM \rangle | d\lambda(IM)$ Performance (Loss) Models and SimulationHazard

Performance-Based Earthquake Engineering

FEMA P-58 (2012) Performance Assessment of Buildings

Seismic Performance Assessment of Buildings Volume 1 – Methodology

FEMA P-58-1 / September 2012

Provides a methodology, basic building information, response quantities, fragilities and consequence data to evaluate the seismic performance of buildings

Procedures are probabilistic

Performance metrics:

- life safety risks
- direct economic losses
- downtime and indirect losses

Recommended Use -

- Evaluate performance of new and existing buildings
- Provide the basis for performance-based design of new buildings and retrofit of existing buildings

Component Performance Toolbox

PELICUN (PROBABILISTIC ESTIMATION OF LOSSES, INJURIES, & COMMUNITY RESILIENCE UNDER NATURAL DISASTERS

OpenSource :: Multi-Fidelity :: Multi-Hazard

Economic Benefits of Cripple Wall Retrofit

PEER ANNUAL MEETING – JANUARY 2020

Limitations to "The Law of Averages"

PEER

PEER-CEA Damage and Loss Assessment

Simulation-Based Regional Risk/Resilience Assessment

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

Application Framework (AF) is designed to assemble a **regional workflow** and streamline regional risk assessment.

State-of-the-art software is available for each task allowing researchers to tailor the workflow to their needs. **New software is easy to add.**

Workflows can run at DesignSafe using **HPC resources** at Texas Advanced Computing Center.

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

SF Bay Area Regional Testbed Study

- ➢ M7.0 Hayward rupture modeled using SW4 [1]
- \succ 1.84 M buildings were included in the simulation
- > Building information is based on UrbanSim data
- Damage and Loss is based FEMA_P58_LU [2]
- OpenSees structural analysis models are based on MDOF_LU
- Run on DesignSafe HPC Resources
- > Example of Results:
 - Red-tagged buildings 141,400
 - Net buildings damage ratio 5.6%

Building Loss Ratio

[1] Petersson, N.A.; Sjogreen, B. (2017), SW4, version 2.0 [software], Computational Infrastructure of Geodynamics, doi: 10.5281/zenodo.1045297, url: <u>https://doi.org/10.5281/zenodo.1045297</u>

[2] Zeng X., Lu X.Z., Yang T., Xu Z., "Application of the FEMA-P58 methodology for regional earthquake loss prediction", Natural Hazards (2016), 10.1007/s11069-016-2307-z

High Resolution Models

Building parcel versus census block resolution of damage and downtime

SimCenter Simulation

USGS Haywired (2018)

High Resolution Models

Parcel-level resolution enables unprecedented quantification of engineered interventions for policy level decisions

SimCenter Simulation

San Francisco Parcels

Opportunities to evaluate planning and policy decisions (retrofit, land use, recovery planning, etc.)

Parcel Model

UrbanSim Output - Sample Results

UrbanCanvas

Displaced Population in Residential Construction (person/parcel; Oakland, Lake Merritt Area)

Urban Growth & Evolving Risk

D. Lallemant, 2015

San Francisco – Tall Building Inventory

156 Tall Buildings (Over 240 ft)

- Occupancy
- Height & Date/Age
- Structural System & Materials
- Façade, Foundation
- BORP, Instrumentation

Impediment of Building Cordons on Recovery

Impact on:

- Emergency Response
- Neighboring Buildings
- Recovery/Reconstruction
- Downtown Economy

Data Sources: Critical Facilities, Building Footprints, and Streets from DataSF.org

Distributed Transportation Systems

Detailed Component Models Linked with Rigorous System Evaluation

1. Risk Landscape

2. Hazards

- Ground Shaking
- Liquefaction
- Landslides
- Tsunami
- Flooding
- Fire
- 3. Risk/Consequence
- 4. Capabilities
- 5. Strategy

Regional Simulation Testbeds

Parcel level damage - 3,828 red-tagged buildings - 14.5% net buildings loss ratio

Memphis, TN Lifelines Testbed

Regional Simulation – Anchorage Example

Estimated Losses

	Recorded GM	Simulated GM		
Repair Cost [\$Billion]	7.5	7.3		
Red Tags	3800	626		
Loss Ratio [%]	14.5	12.5		

Recorded GM

Simulated GM

Parcels Loss Ratios

ctr.Z.

Regional Simulation: Anchorage Story Map

Documents the input data, results and process

SimCenter W

Atlantic City Hurricane Testbed

		Narcola	20 654	
		N parceis	20,054	
		Occupancies	Single & multi-family residential, commercial and industrial	
Year of Construction 1876 - 1900 1900 - 1925 1925 - 1950		Typologies	Wood, steel, masonry, RC, metal buildings	
1950 - 1975 1975 - 2000 2000 - Present	1	1500		
	Digang Digang		L. Burnston	
		1880 1900 19	0 1940 1960 1980 2000 yearBuilt	
		Intensity	Cat 5 (Surrogate Model)	
		RoM	15.4 to 98 miles	
			al 75 to 100 mbar	
Laufert May det & CysectbertRay controls and any of				

AI Tools for Building Feature Identification

Building Feature Identification using AI-enabled Evaluation of Images

Regional Simulation: Memphis Water System

- pelicun to estimate pipe damage and pipe repair times
- rWHALE to estimate ground PGV (using OpenSHA) and to integrate with pelcun to calcuate pipe damage, pipe repair times
- scenario assessments with multiple realizations preserve spatial correlation in ground motions, damage, repairs
- high resolution damage and loss estimates
- support Bayesian approach for model updating and simulation of network interdependencies

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

About 🗸	Research Tools - Learning Tools - Backene	d Components 👻	Knowledge Hub 👻 Join t	the Community	Collaborate
	Overview	Oreg	on	st.	B and
The SimCenter p	quoFEM Application	nulation	Recent News (News Ar	rchive)	
software tools, u	CWE Application	hazards		GAD N	
engineering resea	WE-UQ Application	ıpability	NHERI SimCenter	NE	W SimCenter Webinar: Gathering
to simulate the im	Turbulence Inflow Tool	iunities.		Usi	ing Web Automation
• W	EE-UQ Application	1.1	Gathering Data for Natural Hazards Engineering using Web Aut	tomation Pre	esenter: Wael Elhaddad
	PBE Application	I EI	Wael Elhaddad		
J	Regional Workflow for Hazard And Loss Estimation (rWHA	LE)	SimCenter	December 19, 2019	
	BIMtoSAM.AI	Gan	0		
	SURF	12h			
	BRAILS			The	e NHERI REU Summer Program

Upcoming Events

• SimCenter Workshop: Simulation and Data Needs to Support Disaster **Recovery Planning**

○ January 30-31, 2020 at UC Berkeley

- Workshop: Artificial Intelligence on Natural Hazards Engineering
 - February 18-19, 2020, Texas Advanced Computing Center, University of Texas at Austin

provides research opportunities at the ten NHERI multi-hazard engineering sites during a 10-week summer research program. Applications for the 2020 NHERI **REU Summer Program will close** February 1, 2020 at 11:59pm Central.

DESIGNSAFE-C