
Free vibration response results

Forced vibration response results

Conclusions

• Improved performance of RNN models with 

IIS or SD over MMS scaling.

• Unitless loss competes closely with unit-

dependent losses, with less variability for 

structural dynamics applications.

• Further research is needed with more 

complex models such as ground motions or 

multi-degree of freedom systems.References
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Performance Metric

Evaluated RNN model performance using the average 𝑀𝐴𝑃𝐸 across unique 

time series test files.

 

Initial Input and Static Deformation scaling, combined with unitless loss 

functions, greatly improve RNN performance in structural dynamics.

Results

• IIS scaling has reduced variation in free-

vibration response compared to MMS scaling.

• Smaller time step enhances outlier 

performance in IIS.

• Unitless loss functions yield comparable 

results for MMS and IIS scaling techniques but 

have less variance overall. 

• SD scaling performs the best for forced 

vibration response.
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Introduction

• Neural Networks (NN) structural dynamics modeling can help in 

improved efficiency and speed. 

• Physics-informed neural networks enhance DL learning by integrating 

physical laws.

• Our research leverages RNNs with tailored loss functions for structural 

dynamics response, emphasizing loss selection and data scaling 

importance.

Physics Informed RNN

• RNNs effectively estimate structural 

behavior by analyzing data over time.

• RNN weights {U, V, W} are refined 

using previous input information, x to 

estimate future displacement.

• RNN estimations rely on input data 

preprocessing (data/ feature scaling) 

and loss normalization, impacting 

weight fine-tuning, especially when 

units are involved for uniform 

learning.

• Physics is embedded in the learning 

process through OpenSees.

Loss Function implementation Unitless loss for unitless comparison 
and consistent learning

Step-by-Step implementation

Feature scaling
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a) RNN implementation for free-

response with initial displacement 

b) RNN implementation for forced 

vibration with trigonometric, 

triangle, and constant loads.
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