SimCenter Publications

State of the Art in Computational Simulation for Natural Hazards Engineering (Second Edition)

The expanded "State of the Art in Computational Simulation for Natural Hazards Engineering" report provides an overview and review of simulation requirements and software tools for natural hazards engineering. This second edition reflects comments and suggestions provided by leading researchers in natural hazards engineering, and it also includes new chapters on disaster recovery modeling and applications of machine learning and artificial intelligence technologies.

Chapters of the report are organized into five sequential parts including: (1) simulation methods to characterize the natural hazards; (2) response simulation of structural and geotechnical systems and localized wind and water flows; (3) quantifying the resulting damage and its effects on the performance of buildings, transportation systems, and utility infrastructure systems; (4) strategies and emerging tools to model recovery from natural disasters; and (5) the cross-cutting applications of uncertainty quantification methods and artificial intelligence to natural hazards engineering.

Each section of the report identifies major research gaps and needs, with the intent that research proposals to NSF and other agencies will fill these gaps to advance the field. Further, the report summarizes how tools being developed by the NHERI SimCenter are advancing the state of the art in simulating the effects of natural hazards on the built environment.

Link:

DOI

How to cite:

Gregory G. Deierlein, & Adam Zsarnóczay, eds. (2021, February 23). State of the Art in Computational Simulation for Natural Hazards Engineering (Version v2). Zenodo. http://doi.org/10.5281/zenodo.4558106


A Cloud-Enabled Application Framework for Simulating Regional-Scale Impacts of Natural Hazards on the Built Environment

Frontiers in Built Environment, which publishes rigorously peer-reviewed research encompassing the engineering of buildings, sustainable cities and urban spaces, has released the article “A Cloud-enabled Application Framework for Simulating Regional-scale Impacts of Natural Hazards on the Built Environment,” authored by SimCenter leaders Gregory G Deierlein, Frank McKenna, Adam Zsarnóczay, Tracy Lynn Kijewski-Correa, Ahsan Kareem, Wael Elhaddad, Laura Lowes, Matthew J Schoettler, and Sanjay Govindjee.

The paper describes the open source workflow tools and applications that the SimCenter has released and is continuing to develop. These are organized around a framework that encourages the sharing of models and data for simulations of natural hazards and their effects on the built environment. This article is an open access publication available to readers anywhere in the world.

How to cite:

Deierlein GG, McKenna F, Zsarnóczay A, Kijewski-Correa T, Kareem A, Elhaddad W, Lowes L, Schoettler MJ and Govindjee S (2020) A Cloud-Enabled Application Framework for Simulating Regional-Scale Impacts of Natural Hazards on the Built Environment. Front. Built Environ. 6:558706. doi: 10.3389/fbuil.2020.558706


State of the Art in Computational Simulation for Natural Hazards Engineering (Report 2020-01)

This report provides an overview and review of simulation requirements and software tools for natural hazards engineering of the built environment.  The simulations discussed in this report are an essential component of research to address the three grand challenge areas and associated research questions outlined in the NHERI Science Plan: (1) quantifying natural hazards and their effects on civil infrastructure; (2) evaluating the vulnerability of civil infrastructure and social vulnerability of populations in at risk communities; and (3) creation of technologies and tools to design and implement measures to promote resilience to natural hazards. Accordingly, required simulation technologies encompass a broad range of phenomena and considerations, from characterization and simulation of natural hazards and their damaging effects on buildings and civil infrastructure, to quantifying the resulting economic losses, disruption, and other consequences on society. Ultimately, the goal is to enable high-fidelity and high-resolution models in regional simulations that can support technological, economic, and policy solutions to mitigate the threat of natural hazards.

In addition to summarizing the state-of-art in the various topic areas, each section of the report identifies major research gaps and needs, with the intent that researchers will prepare research proposals to NSF and other agencies to fill these gaps in order to advance the field. Further, the report summarizes how tools being developed by the NHERI SimCenter are advancing the state-of-art in simulating the effects of natural hazards on the built environment.

Link:

DOI

How to cite:

Gregory G. Deierlein, & Adam Zsarnóczay, eds. (2019, February 27). State-of-Art in Computational Simulation for Natural Hazards Engineering. Zenodo. http://doi.org/10.5281/zenodo.2579582


Requirements Traceability Matrix

The RTM is a table linking requirements, deliverables, and tests. User requirements for the SimCenter were obtained by reviewing the vision documents referenced in the solicitation [2, 3, 5, 6] for wind and earthquake hazards for all perceived simulation needs and missing-links to attain the vision were gathered. These needs were transformed into user requirements, whose adaptation into software and services provided by SimCenter will be validated through rigorous testing protocols.